direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×C3⋊Q16, C12.32C24, Dic6.28C23, (C2×C6)⋊9Q16, C6⋊3(C2×Q16), C3⋊3(C22×Q16), C3⋊C8.29C23, (C2×C12).212D4, C12.256(C2×D4), C4.32(S3×C23), (C2×Q8).209D6, (C22×C6).211D4, C6.151(C22×D4), (C22×C4).398D6, (C22×Q8).13S3, (C3×Q8).21C23, Q8.31(C22×S3), (C2×C12).549C23, (C6×Q8).230C22, C23.114(C3⋊D4), (C22×Dic6).18C2, (C22×C12).281C22, (C2×Dic6).306C22, (Q8×C2×C6).6C2, C4.26(C2×C3⋊D4), (C2×C6).586(C2×D4), (C22×C3⋊C8).14C2, (C2×C3⋊C8).287C22, C2.24(C22×C3⋊D4), (C2×C4).155(C3⋊D4), (C2×C4).630(C22×S3), C22.114(C2×C3⋊D4), SmallGroup(192,1368)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 520 in 258 conjugacy classes, 127 normal (15 characteristic)
C1, C2, C2 [×6], C3, C4, C4 [×3], C4 [×8], C22 [×7], C6, C6 [×6], C8 [×4], C2×C4 [×6], C2×C4 [×12], Q8 [×4], Q8 [×16], C23, Dic3 [×4], C12, C12 [×3], C12 [×4], C2×C6 [×7], C2×C8 [×6], Q16 [×16], C22×C4, C22×C4 [×2], C2×Q8 [×6], C2×Q8 [×12], C3⋊C8 [×4], Dic6 [×4], Dic6 [×6], C2×Dic3 [×6], C2×C12 [×6], C2×C12 [×6], C3×Q8 [×4], C3×Q8 [×6], C22×C6, C22×C8, C2×Q16 [×12], C22×Q8, C22×Q8, C2×C3⋊C8 [×6], C3⋊Q16 [×16], C2×Dic6 [×6], C2×Dic6 [×3], C22×Dic3, C22×C12, C22×C12, C6×Q8 [×6], C6×Q8 [×3], C22×Q16, C22×C3⋊C8, C2×C3⋊Q16 [×12], C22×Dic6, Q8×C2×C6, C22×C3⋊Q16
Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], Q16 [×4], C2×D4 [×6], C24, C3⋊D4 [×4], C22×S3 [×7], C2×Q16 [×6], C22×D4, C3⋊Q16 [×4], C2×C3⋊D4 [×6], S3×C23, C22×Q16, C2×C3⋊Q16 [×6], C22×C3⋊D4, C22×C3⋊Q16
Generators and relations
G = < a,b,c,d,e | a2=b2=c3=d8=1, e2=d4, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=c-1, ce=ec, ede-1=d-1 >
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 123)(18 124)(19 125)(20 126)(21 127)(22 128)(23 121)(24 122)(25 89)(26 90)(27 91)(28 92)(29 93)(30 94)(31 95)(32 96)(33 76)(34 77)(35 78)(36 79)(37 80)(38 73)(39 74)(40 75)(41 114)(42 115)(43 116)(44 117)(45 118)(46 119)(47 120)(48 113)(49 141)(50 142)(51 143)(52 144)(53 137)(54 138)(55 139)(56 140)(57 85)(58 86)(59 87)(60 88)(61 81)(62 82)(63 83)(64 84)(65 134)(66 135)(67 136)(68 129)(69 130)(70 131)(71 132)(72 133)(97 175)(98 176)(99 169)(100 170)(101 171)(102 172)(103 173)(104 174)(105 150)(106 151)(107 152)(108 145)(109 146)(110 147)(111 148)(112 149)(153 181)(154 182)(155 183)(156 184)(157 177)(158 178)(159 179)(160 180)(161 189)(162 190)(163 191)(164 192)(165 185)(166 186)(167 187)(168 188)
(1 81)(2 82)(3 83)(4 84)(5 85)(6 86)(7 87)(8 88)(9 59)(10 60)(11 61)(12 62)(13 63)(14 64)(15 57)(16 58)(17 35)(18 36)(19 37)(20 38)(21 39)(22 40)(23 33)(24 34)(25 41)(26 42)(27 43)(28 44)(29 45)(30 46)(31 47)(32 48)(49 166)(50 167)(51 168)(52 161)(53 162)(54 163)(55 164)(56 165)(65 153)(66 154)(67 155)(68 156)(69 157)(70 158)(71 159)(72 160)(73 126)(74 127)(75 128)(76 121)(77 122)(78 123)(79 124)(80 125)(89 114)(90 115)(91 116)(92 117)(93 118)(94 119)(95 120)(96 113)(97 109)(98 110)(99 111)(100 112)(101 105)(102 106)(103 107)(104 108)(129 184)(130 177)(131 178)(132 179)(133 180)(134 181)(135 182)(136 183)(137 190)(138 191)(139 192)(140 185)(141 186)(142 187)(143 188)(144 189)(145 174)(146 175)(147 176)(148 169)(149 170)(150 171)(151 172)(152 173)
(1 41 54)(2 55 42)(3 43 56)(4 49 44)(5 45 50)(6 51 46)(7 47 52)(8 53 48)(9 120 144)(10 137 113)(11 114 138)(12 139 115)(13 116 140)(14 141 117)(15 118 142)(16 143 119)(17 71 104)(18 97 72)(19 65 98)(20 99 66)(21 67 100)(22 101 68)(23 69 102)(24 103 70)(25 163 81)(26 82 164)(27 165 83)(28 84 166)(29 167 85)(30 86 168)(31 161 87)(32 88 162)(33 157 106)(34 107 158)(35 159 108)(36 109 160)(37 153 110)(38 111 154)(39 155 112)(40 105 156)(57 93 187)(58 188 94)(59 95 189)(60 190 96)(61 89 191)(62 192 90)(63 91 185)(64 186 92)(73 148 182)(74 183 149)(75 150 184)(76 177 151)(77 152 178)(78 179 145)(79 146 180)(80 181 147)(121 130 172)(122 173 131)(123 132 174)(124 175 133)(125 134 176)(126 169 135)(127 136 170)(128 171 129)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)
(1 152 5 148)(2 151 6 147)(3 150 7 146)(4 149 8 145)(9 109 13 105)(10 108 14 112)(11 107 15 111)(12 106 16 110)(17 186 21 190)(18 185 22 189)(19 192 23 188)(20 191 24 187)(25 131 29 135)(26 130 30 134)(27 129 31 133)(28 136 32 132)(33 143 37 139)(34 142 38 138)(35 141 39 137)(36 140 40 144)(41 178 45 182)(42 177 46 181)(43 184 47 180)(44 183 48 179)(49 74 53 78)(50 73 54 77)(51 80 55 76)(52 79 56 75)(57 99 61 103)(58 98 62 102)(59 97 63 101)(60 104 64 100)(65 90 69 94)(66 89 70 93)(67 96 71 92)(68 95 72 91)(81 173 85 169)(82 172 86 176)(83 171 87 175)(84 170 88 174)(113 159 117 155)(114 158 118 154)(115 157 119 153)(116 156 120 160)(121 168 125 164)(122 167 126 163)(123 166 127 162)(124 165 128 161)
G:=sub<Sym(192)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,123)(18,124)(19,125)(20,126)(21,127)(22,128)(23,121)(24,122)(25,89)(26,90)(27,91)(28,92)(29,93)(30,94)(31,95)(32,96)(33,76)(34,77)(35,78)(36,79)(37,80)(38,73)(39,74)(40,75)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,113)(49,141)(50,142)(51,143)(52,144)(53,137)(54,138)(55,139)(56,140)(57,85)(58,86)(59,87)(60,88)(61,81)(62,82)(63,83)(64,84)(65,134)(66,135)(67,136)(68,129)(69,130)(70,131)(71,132)(72,133)(97,175)(98,176)(99,169)(100,170)(101,171)(102,172)(103,173)(104,174)(105,150)(106,151)(107,152)(108,145)(109,146)(110,147)(111,148)(112,149)(153,181)(154,182)(155,183)(156,184)(157,177)(158,178)(159,179)(160,180)(161,189)(162,190)(163,191)(164,192)(165,185)(166,186)(167,187)(168,188), (1,81)(2,82)(3,83)(4,84)(5,85)(6,86)(7,87)(8,88)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,57)(16,58)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,33)(24,34)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(49,166)(50,167)(51,168)(52,161)(53,162)(54,163)(55,164)(56,165)(65,153)(66,154)(67,155)(68,156)(69,157)(70,158)(71,159)(72,160)(73,126)(74,127)(75,128)(76,121)(77,122)(78,123)(79,124)(80,125)(89,114)(90,115)(91,116)(92,117)(93,118)(94,119)(95,120)(96,113)(97,109)(98,110)(99,111)(100,112)(101,105)(102,106)(103,107)(104,108)(129,184)(130,177)(131,178)(132,179)(133,180)(134,181)(135,182)(136,183)(137,190)(138,191)(139,192)(140,185)(141,186)(142,187)(143,188)(144,189)(145,174)(146,175)(147,176)(148,169)(149,170)(150,171)(151,172)(152,173), (1,41,54)(2,55,42)(3,43,56)(4,49,44)(5,45,50)(6,51,46)(7,47,52)(8,53,48)(9,120,144)(10,137,113)(11,114,138)(12,139,115)(13,116,140)(14,141,117)(15,118,142)(16,143,119)(17,71,104)(18,97,72)(19,65,98)(20,99,66)(21,67,100)(22,101,68)(23,69,102)(24,103,70)(25,163,81)(26,82,164)(27,165,83)(28,84,166)(29,167,85)(30,86,168)(31,161,87)(32,88,162)(33,157,106)(34,107,158)(35,159,108)(36,109,160)(37,153,110)(38,111,154)(39,155,112)(40,105,156)(57,93,187)(58,188,94)(59,95,189)(60,190,96)(61,89,191)(62,192,90)(63,91,185)(64,186,92)(73,148,182)(74,183,149)(75,150,184)(76,177,151)(77,152,178)(78,179,145)(79,146,180)(80,181,147)(121,130,172)(122,173,131)(123,132,174)(124,175,133)(125,134,176)(126,169,135)(127,136,170)(128,171,129), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192), (1,152,5,148)(2,151,6,147)(3,150,7,146)(4,149,8,145)(9,109,13,105)(10,108,14,112)(11,107,15,111)(12,106,16,110)(17,186,21,190)(18,185,22,189)(19,192,23,188)(20,191,24,187)(25,131,29,135)(26,130,30,134)(27,129,31,133)(28,136,32,132)(33,143,37,139)(34,142,38,138)(35,141,39,137)(36,140,40,144)(41,178,45,182)(42,177,46,181)(43,184,47,180)(44,183,48,179)(49,74,53,78)(50,73,54,77)(51,80,55,76)(52,79,56,75)(57,99,61,103)(58,98,62,102)(59,97,63,101)(60,104,64,100)(65,90,69,94)(66,89,70,93)(67,96,71,92)(68,95,72,91)(81,173,85,169)(82,172,86,176)(83,171,87,175)(84,170,88,174)(113,159,117,155)(114,158,118,154)(115,157,119,153)(116,156,120,160)(121,168,125,164)(122,167,126,163)(123,166,127,162)(124,165,128,161)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,123)(18,124)(19,125)(20,126)(21,127)(22,128)(23,121)(24,122)(25,89)(26,90)(27,91)(28,92)(29,93)(30,94)(31,95)(32,96)(33,76)(34,77)(35,78)(36,79)(37,80)(38,73)(39,74)(40,75)(41,114)(42,115)(43,116)(44,117)(45,118)(46,119)(47,120)(48,113)(49,141)(50,142)(51,143)(52,144)(53,137)(54,138)(55,139)(56,140)(57,85)(58,86)(59,87)(60,88)(61,81)(62,82)(63,83)(64,84)(65,134)(66,135)(67,136)(68,129)(69,130)(70,131)(71,132)(72,133)(97,175)(98,176)(99,169)(100,170)(101,171)(102,172)(103,173)(104,174)(105,150)(106,151)(107,152)(108,145)(109,146)(110,147)(111,148)(112,149)(153,181)(154,182)(155,183)(156,184)(157,177)(158,178)(159,179)(160,180)(161,189)(162,190)(163,191)(164,192)(165,185)(166,186)(167,187)(168,188), (1,81)(2,82)(3,83)(4,84)(5,85)(6,86)(7,87)(8,88)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,57)(16,58)(17,35)(18,36)(19,37)(20,38)(21,39)(22,40)(23,33)(24,34)(25,41)(26,42)(27,43)(28,44)(29,45)(30,46)(31,47)(32,48)(49,166)(50,167)(51,168)(52,161)(53,162)(54,163)(55,164)(56,165)(65,153)(66,154)(67,155)(68,156)(69,157)(70,158)(71,159)(72,160)(73,126)(74,127)(75,128)(76,121)(77,122)(78,123)(79,124)(80,125)(89,114)(90,115)(91,116)(92,117)(93,118)(94,119)(95,120)(96,113)(97,109)(98,110)(99,111)(100,112)(101,105)(102,106)(103,107)(104,108)(129,184)(130,177)(131,178)(132,179)(133,180)(134,181)(135,182)(136,183)(137,190)(138,191)(139,192)(140,185)(141,186)(142,187)(143,188)(144,189)(145,174)(146,175)(147,176)(148,169)(149,170)(150,171)(151,172)(152,173), (1,41,54)(2,55,42)(3,43,56)(4,49,44)(5,45,50)(6,51,46)(7,47,52)(8,53,48)(9,120,144)(10,137,113)(11,114,138)(12,139,115)(13,116,140)(14,141,117)(15,118,142)(16,143,119)(17,71,104)(18,97,72)(19,65,98)(20,99,66)(21,67,100)(22,101,68)(23,69,102)(24,103,70)(25,163,81)(26,82,164)(27,165,83)(28,84,166)(29,167,85)(30,86,168)(31,161,87)(32,88,162)(33,157,106)(34,107,158)(35,159,108)(36,109,160)(37,153,110)(38,111,154)(39,155,112)(40,105,156)(57,93,187)(58,188,94)(59,95,189)(60,190,96)(61,89,191)(62,192,90)(63,91,185)(64,186,92)(73,148,182)(74,183,149)(75,150,184)(76,177,151)(77,152,178)(78,179,145)(79,146,180)(80,181,147)(121,130,172)(122,173,131)(123,132,174)(124,175,133)(125,134,176)(126,169,135)(127,136,170)(128,171,129), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192), (1,152,5,148)(2,151,6,147)(3,150,7,146)(4,149,8,145)(9,109,13,105)(10,108,14,112)(11,107,15,111)(12,106,16,110)(17,186,21,190)(18,185,22,189)(19,192,23,188)(20,191,24,187)(25,131,29,135)(26,130,30,134)(27,129,31,133)(28,136,32,132)(33,143,37,139)(34,142,38,138)(35,141,39,137)(36,140,40,144)(41,178,45,182)(42,177,46,181)(43,184,47,180)(44,183,48,179)(49,74,53,78)(50,73,54,77)(51,80,55,76)(52,79,56,75)(57,99,61,103)(58,98,62,102)(59,97,63,101)(60,104,64,100)(65,90,69,94)(66,89,70,93)(67,96,71,92)(68,95,72,91)(81,173,85,169)(82,172,86,176)(83,171,87,175)(84,170,88,174)(113,159,117,155)(114,158,118,154)(115,157,119,153)(116,156,120,160)(121,168,125,164)(122,167,126,163)(123,166,127,162)(124,165,128,161) );
G=PermutationGroup([(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,123),(18,124),(19,125),(20,126),(21,127),(22,128),(23,121),(24,122),(25,89),(26,90),(27,91),(28,92),(29,93),(30,94),(31,95),(32,96),(33,76),(34,77),(35,78),(36,79),(37,80),(38,73),(39,74),(40,75),(41,114),(42,115),(43,116),(44,117),(45,118),(46,119),(47,120),(48,113),(49,141),(50,142),(51,143),(52,144),(53,137),(54,138),(55,139),(56,140),(57,85),(58,86),(59,87),(60,88),(61,81),(62,82),(63,83),(64,84),(65,134),(66,135),(67,136),(68,129),(69,130),(70,131),(71,132),(72,133),(97,175),(98,176),(99,169),(100,170),(101,171),(102,172),(103,173),(104,174),(105,150),(106,151),(107,152),(108,145),(109,146),(110,147),(111,148),(112,149),(153,181),(154,182),(155,183),(156,184),(157,177),(158,178),(159,179),(160,180),(161,189),(162,190),(163,191),(164,192),(165,185),(166,186),(167,187),(168,188)], [(1,81),(2,82),(3,83),(4,84),(5,85),(6,86),(7,87),(8,88),(9,59),(10,60),(11,61),(12,62),(13,63),(14,64),(15,57),(16,58),(17,35),(18,36),(19,37),(20,38),(21,39),(22,40),(23,33),(24,34),(25,41),(26,42),(27,43),(28,44),(29,45),(30,46),(31,47),(32,48),(49,166),(50,167),(51,168),(52,161),(53,162),(54,163),(55,164),(56,165),(65,153),(66,154),(67,155),(68,156),(69,157),(70,158),(71,159),(72,160),(73,126),(74,127),(75,128),(76,121),(77,122),(78,123),(79,124),(80,125),(89,114),(90,115),(91,116),(92,117),(93,118),(94,119),(95,120),(96,113),(97,109),(98,110),(99,111),(100,112),(101,105),(102,106),(103,107),(104,108),(129,184),(130,177),(131,178),(132,179),(133,180),(134,181),(135,182),(136,183),(137,190),(138,191),(139,192),(140,185),(141,186),(142,187),(143,188),(144,189),(145,174),(146,175),(147,176),(148,169),(149,170),(150,171),(151,172),(152,173)], [(1,41,54),(2,55,42),(3,43,56),(4,49,44),(5,45,50),(6,51,46),(7,47,52),(8,53,48),(9,120,144),(10,137,113),(11,114,138),(12,139,115),(13,116,140),(14,141,117),(15,118,142),(16,143,119),(17,71,104),(18,97,72),(19,65,98),(20,99,66),(21,67,100),(22,101,68),(23,69,102),(24,103,70),(25,163,81),(26,82,164),(27,165,83),(28,84,166),(29,167,85),(30,86,168),(31,161,87),(32,88,162),(33,157,106),(34,107,158),(35,159,108),(36,109,160),(37,153,110),(38,111,154),(39,155,112),(40,105,156),(57,93,187),(58,188,94),(59,95,189),(60,190,96),(61,89,191),(62,192,90),(63,91,185),(64,186,92),(73,148,182),(74,183,149),(75,150,184),(76,177,151),(77,152,178),(78,179,145),(79,146,180),(80,181,147),(121,130,172),(122,173,131),(123,132,174),(124,175,133),(125,134,176),(126,169,135),(127,136,170),(128,171,129)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192)], [(1,152,5,148),(2,151,6,147),(3,150,7,146),(4,149,8,145),(9,109,13,105),(10,108,14,112),(11,107,15,111),(12,106,16,110),(17,186,21,190),(18,185,22,189),(19,192,23,188),(20,191,24,187),(25,131,29,135),(26,130,30,134),(27,129,31,133),(28,136,32,132),(33,143,37,139),(34,142,38,138),(35,141,39,137),(36,140,40,144),(41,178,45,182),(42,177,46,181),(43,184,47,180),(44,183,48,179),(49,74,53,78),(50,73,54,77),(51,80,55,76),(52,79,56,75),(57,99,61,103),(58,98,62,102),(59,97,63,101),(60,104,64,100),(65,90,69,94),(66,89,70,93),(67,96,71,92),(68,95,72,91),(81,173,85,169),(82,172,86,176),(83,171,87,175),(84,170,88,174),(113,159,117,155),(114,158,118,154),(115,157,119,153),(116,156,120,160),(121,168,125,164),(122,167,126,163),(123,166,127,162),(124,165,128,161)])
Matrix representation ►G ⊆ GL6(𝔽73)
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 72 | 0 | 0 | 0 | 0 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 72 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 32 |
0 | 0 | 0 | 0 | 57 | 32 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 67 | 59 |
0 | 0 | 0 | 0 | 60 | 6 |
G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[0,1,0,0,0,0,72,72,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,72,72,0,0,0,0,0,0,1,0,0,0,0,0,72,72,0,0,0,0,0,0,0,57,0,0,0,0,32,32],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,67,60,0,0,0,0,59,6] >;
48 conjugacy classes
class | 1 | 2A | ··· | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 6A | ··· | 6G | 8A | ··· | 8H | 12A | ··· | 12L |
order | 1 | 2 | ··· | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 8 | ··· | 8 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | ··· | 2 | 6 | ··· | 6 | 4 | ··· | 4 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | - | ||
image | C1 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D6 | D6 | Q16 | C3⋊D4 | C3⋊D4 | C3⋊Q16 |
kernel | C22×C3⋊Q16 | C22×C3⋊C8 | C2×C3⋊Q16 | C22×Dic6 | Q8×C2×C6 | C22×Q8 | C2×C12 | C22×C6 | C22×C4 | C2×Q8 | C2×C6 | C2×C4 | C23 | C22 |
# reps | 1 | 1 | 12 | 1 | 1 | 1 | 3 | 1 | 1 | 6 | 8 | 6 | 2 | 4 |
In GAP, Magma, Sage, TeX
C_2^2\times C_3\rtimes Q_{16}
% in TeX
G:=Group("C2^2xC3:Q16");
// GroupNames label
G:=SmallGroup(192,1368);
// by ID
G=gap.SmallGroup(192,1368);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,675,136,1684,235,102,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^8=1,e^2=d^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=c^-1,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations